Independent component analysis via nonparametric maximum likelihood estimation
نویسندگان
چکیده
منابع مشابه
Independent Component Analysis via Nonparametric Maximum Likelihood Estimation By
Independent Component Analysis (ICA) models are very popular semiparametric models in which we observe independent copies of a random vector X =AS, where A is a non-singular matrix and S has independent components. We propose a new way of estimating the unmixing matrix W = A−1 and the marginal distributions of the components of S using nonparametric maximum likelihood. Specifically, we study th...
متن کاملAutomatic Generalized Nonparametric Regression via Maximum Likelihood
A relatively recent development in nonparametric regression is the representation of spline-based smoothers as mixed model fits. In particular, generalized nonparametric regression (e.g. smoothingwith a binary response) corresponds to fitting a generalized linear mixedmodel. Automation, or data-driven smoothing parameter selection, can be achieved via (restricted) maximum likelihood estimation ...
متن کاملMaximum Likelihood and Covariant Algorithms for Independent Component Analysis
Bell and Sejnowski (1995) have derived a blind signal processing algorithm for a non-linear feedforward network from an information maximization viewpoint. This paper first shows that the same algorithm can be viewed as a maximum likelihood algorithm for the optimization of a linear generative model. Second, a covariant version of the algorithm is derived. This algorithm is simpler and somewhat...
متن کاملMaximum Likelihood Principal Component Analysis
PETER D. WENTZELL, DARREN T. ANDREWS, DAVID C. HAMILTON, KLAAS FABER AND BRUCE R. KOWALSKI 1 Trace Analysis Research Centre, Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada 2 Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada 3 Center for Process Analytical Chemistry, University of Washingto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2012
ISSN: 0090-5364
DOI: 10.1214/12-aos1060